在过去的一年中,zk-SNARK的进展超出了预期。尽管普遍共识认为这些创新还需要数年时间,但应用程序,如ZK-EVM,正在出现。zk-SNARK的增强功能已使得探索区块链的新用例成为可能,尤其是,我们正在密切关注使用zk-SNARK解决由机器学习和人工智能增加使用带来的许多紧迫问题的研究。
随着机器学习的普及,它正在广泛应用于各种应用程序中。然而,其预测的可信度以及对不透明数据源的依赖性成为了一个主要问题。复制声称具有高准确度的模型的能力很难,而在实际产品中预测的一致性和正确性也没有保证。
本文旨在简要介绍为什么对基于zk-SNARK的机器学习系统产生了浓厚的兴趣,并讨论了该技术的一些潜在应用。
ApeCoin DAO发起新提案AIP-295拟设置治理投票条件:需至少持有1 APE:金色财经报道,ApeCoin DAO已发起新提案AIP-295拟设置治理投票条件并完善ApeCoin DAO中的投票机制,该提案旨在消除机器人并减少试图通过使用少量 ApeCoin 投票来博取未来利益的个人,因此设置快照投票必须至少需要持有1 APE代币,同时也将提升现有投票流程效率。根据Snapshot信息显示,该提案投票的结束日期为8月10日,当前赞成支持率为100%。[2023/8/6 16:20:49]
为什么需要ZK-ML?
使用监督式机器学习时,输入被提供给已经用特定参数训练过的模型。然后该模型产生可被其他系统使用的输出。由于轻量级的机器学习框架和ONNX等格式,现在可以在边缘设备上运行这些推理,例如手机或物联网设备,而不是将输入数据发送到集中式服务器。这提高了用户的可扩展性和隐私性。
稳定币协议QiDAO推出QiDAO V2,引入新的清算引擎并改进风险管理功能:6月29日消息,稳定币协议QiDAO推出更新版本QiDAO V2,新功能包括新的清算引擎、改进的风险管理功能、特定于链的定制、保险库弃用、多个前端。此外,QiDAO V2解决了社区的需求:限制每个保险库可以拥有的债务规模;持续的流动性监控;新的保险库和预言机代码都必须在发布前得到DAO的批准。[2022/6/29 1:38:41]
然而,需要注意的是,通常会将机器学习模型的输入和参数都保持私密并隐藏在公众视野之外。这是因为输入数据可能包含敏感信息,例如个人金融或生物识别数据,而模型参数也可能包含敏感信息,例如生物识别验证参数。
另一方面,使用ML模型的输出的下游系统,例如链上智能合约,需要能够验证输入是否正确处理以产生声称的输出。
社交平台Upstream正在推出DAO构建器:金色财经报道,专注于网络和现场活动的社交平台公司Upstream正在推出一体化DAO构建器Upstream Collective。这将允许任何人通过发行代币来启动DAO,然后可以使用这些代币来创建提案并对其进行投票。如果提议通过,提议的操作将自动在链上执行。参与者甚至不需要知道如何编码。[2021/11/19 6:58:41]
机器学习和zkSNARK协议的结合提供了一种新的解决方案,解决了这些看似矛盾的要求。
ZK-ML用例
有许多论文讨论了我们可以如何使用zk-SNARKs来改善我们未来的机器学习。ZK-ML社区提供了一个非常有用的决策树,让我们考虑这种技术的各种用例。
Web3孵化器DAOsquare提前关闭RICE在Balancer上的LBP:Web3孵化器DAOsquare(RICE)发布公告称,由于市场环境影响导致交易量未达预期,官方提前关闭了其代币RICE在Balancer上的LBP。[2021/5/24 22:37:16]
这个决策树基于两个标准的交集:需要隐私和计算完整性,以及使用机器学习解决的启发式优化问题。换句话说,决策树用于确定是否适合使用涉及ZKML的用例,在这些用例中,隐私和计算完整性很重要,并且使用机器学习技术解决启发式优化问题,
以下是zk如何用于ML模型创新的一些方式:
隐私保护机器学习
zk-SNARK可用于在不向模型的创建者或用户公开私有数据的情况下对机器学习模型进行训练。这允许开发可以在敏感或受监管的行业中使用的模型,而不会损害使用个人数据的个人隐私。
可验证机器学习
zk-SNARK可用于证明机器学习模型是在特定数据集上进行训练的,或者特定模型用于进行预测,而不会透露训练数据或模型的详细信息。这可以增加对机器学习模型结果的信任,这在信用评分或医学诊断等应用中非常重要。
安全机器学习
zk-SNARK可用于通过确保模型未被篡改或替换为不同的模型来保护机器学习模型的完整性。这在模型部署在不受信任的环境中的应用中非常有用。
ZKonduit可能的应用
像ZKonduit这样的项目正在将ZK-ML视为赋予区块链眼睛、让智能合约行使判断力、单人预言机以及通常以可扩展的方式在链上获取数据的关键。使用ZK-ML预言者提供了一种更简单、更快速、更高效的方式,将链下数据传输到区块链上,大大增加了将数据带到链上的潜力。ZK-ML可以使“智能法官”解释模糊事件。这可能为Web3带来不可想象的新用例,但以下仅是最近讨论过的一些用例:
ZKKYC
能够证明一个人的身份与相应的身份证匹配,并且该身份证号码不在制裁名单上。虽然这项技术是可用的,但监管机构可能不会接受它,因为它们目前要求银行“了解”其客户,而不仅仅是验证他们不在制裁名单上。这是监管机构的一个新领域,必须采取措施防止不受欢迎的参与者使用去中心化项目。
防欺诈检查
智能合约或抽象账户添加了一个ZK-ML欺诈垃圾邮件检查,用于检测异常行为。这意味着可以通过分析活动模式并将其与已知的欺诈或垃圾邮件活动模式进行比较,使用零知识机器学习技术来检测和防止欺诈或垃圾邮件行为。这可以通过检测和防止恶意活动来帮助确保系统的安全性和完整性。
使DAO自治
Zk-SNARKs技术允许以保护输入数据隐私的方式执行复杂计算,适用于需要保护敏感信息的情况。可以将机器学习算法集成到该技术中,以实现更先进的决策制定、评估和更高效、准确的通信系统。这些能力对未来的DAO内部动态可能至关重要。
结论
将零知识证明集成到人工智能系统中,可以为用户和使用这些系统的公司提供新的安全和隐私保护级别。通过使人工智能能够证明其决策的有效性,而不揭示底层数据或算法,零知识证明可以帮助缓解数据泄露和恶意攻击的风险。此外,它们还可以通过提供透明和可验证的方式来证明其公平性和准确性,从而有助于建立人工智能系统的信任。
随着人工智能领域的不断发展和扩大,零知识证明的应用将越来越重要,以确保这些强大技术的安全和负责任的部署。
2023年开年,Layer2热度在久经准备后居高不下,已有人将2023年称为“Layer2”之年.
元宇宙,Web3时代最新热词,和NFT、DAO等新晋热门概念一起在2021年横空出世。这一概念最早诞生于1992年的科幻小说《雪崩》,小说中描绘了一个庞大的虚拟现实世界,人们用数字化身来控制,并.
ETH链上数据继续回暖 自以太坊大合并以来,ETH总量非但没有增加,反而通过燃烧减少了23,700多枚,目前年通胀率为-0.053%.
ZK作为L2、隐私、跨链等概念下的核心技术派系,该板块热度自2022年延续至今;近期的ETHdenver大会上,ZK持续高热.
本月NFT赛道新贵Blur公布了第二轮激励计划,该平台的交易市场热火朝天。在去年年末一度取代OpenSea成为第一的NFT交易平台,目前占据了超过50%的市场份额.
原文作者:Blcokunicorn web2与web3 web2是我们当前的主流互联网版本,它是基于中心化架构的互联网,由中心化平台提供服务并主导如今的互联网,如推特、脸书、微信等.