文:Jenny Xiao (肖文泉)、Jay Zhao
去年12月,ChatGPT火爆出圈,资本和科技界迅速开始讨论AIGC技术的潜力和前景。而中国和硅谷很快成为了这场讨论的中心。
AIGC在硅谷持续升温,众多顶级VC纷纷发布相关行研。2022年9月,红杉资本发布了一篇叫做《生成式AI:一个创造性的新世界》的文章,指出AIGC应用将在未来几年大量落地,AI生成的文字、图片、视频将逐渐走入人们的生活。
今年春节刚过,腾讯研究院又推出《AIGC发展趋势报告2023:迎接人工智能的下一个时代》,预测未来五年10%-30%的互联网图像将由AI生成,AIGC市场到2030年可能达到1100亿美元的规模。
不少业内人士认为中国的AIGC产业处于发展的初期,底层技术和应用层面和国外还有较大的差距。虽然国内众多厂商开始布局AIGC,但是目前的商业模式还不成熟。技术层面的不足也限制了应用端的发展。
但事实上,中国是美国市场之外唯一一个拥有完整的AIGC产业链的国家。中国的AIGC产业很可能发展出和硅谷完全不一样的生态系统。
今天,我们就带大家来深入解析对比中国和硅谷的AIGC赛道,看看国内的AIGC行业和国外到底有什么区别,未来又会有什么样的发展趋势。
当全世界把目光放到了ChatGPT上时,中国的AIGC模型也正在飞速发展。
从AIGC模型数量上来看,全世界前十的AIGC模型研发者中,中国机构占了四个。其中有学院派的BAAI智源研究院和清华大学,也有产业界的百度和阿里巴巴研究院。顶级的西方AI机构谷歌、Meta还有OpenAI当然也榜上有名。值得一提的是,除了英美之外,虽然以色列有AI21,加拿大有Cohere,只有中国有多家机构在研发AI模型。
HyperGraph 与 LambSwap 达成深度战略合作关系:据官方消息,HyperGraph 与知名区块链存储项目 Lambda 旗下 LambSwap 达成战略合作关系, LambSwap 已经采用了 HyperGraph 的数据索引查询服务来交付行情版块。
这仅是双方合作的起点,双方还将开放 HGT/LAMB、HGT/GOAT 交易,并开启流动性挖矿,尤其数据和存储存在天然的依存关系,双方将一道挖掘DeFi数据层面的真正潜力。[2021/4/14 20:17:00]
中国企业近几年在自主研发上下的功夫也为AIGC产业打下了基础。比如,百度的飞桨PaddlePaddle和华为MindSpore开源框架。这些框架和国外常用框架(比如TensorFlow和PyTorch)的不兼容可能会限制国产框架的发展,但是例如Ivy这样的框架转换器或许能成为中西方AI框架的桥梁。
在社区层面,在2013年开发出来的Gitee成为了号称“中国GitHub”的开源技术社区。如今,很多大模型都在Gitee上开源,比如中科院的紫东太初大模型。Gitee社区也吸引到了超过800万开发者用户。可见Gitee社区和国产框架都成为了中国AIGC发展不可或缺的软件设施。
在硬件层面,国产的芯片也称为了训练AIGC模型的常见之选。在训练2000亿参数的超大盘古模型的过程中,来自华为的团队调用了超过2000块华为昇腾910芯片。而2600亿参数的百度ERNIE 3.0 Titan还有千亿参数紫东太初模型也是在华为昇腾系列的芯片上训练出来的。
苏交科与阿里云宣布合作 推动区块链等技术与交通深度融合:6月1日,苏交科集团与阿里云签署正式合作协议。双方宣布在智慧交通、交通行业信息化等领域展开紧密合作,推动数据技术、人工智能、区块链等云计算新技术与交通行业深度融合。(证券时报e公司)[2020/6/2]
AIGC模型十大开发机构
从预训练语言模型的参数量来看,很多中国的模型其实并不比西方逊色。但是站在用户体验的角度,ChatGPT确实要领先于中国的语言模型,还有西方其他公司的模型。中国的开发者总能够赶上西方的领头羊,但是这个技术追赶的过程却需要2-3年。比如,OpenAI在2020年6月推出GPT-3模型,中国的智源、华为、百度在差不多一年之后才研发出了体量与之相当的模型,又用了一段时间才让模型的技能和GPT-3相媲美。
预训练语言模型参考量
在一定程度上,中国的AIGC底层技术也受益于西方的开源运动。在StabilityAI发布Stable Diffusion模型之后不久,国内的IDEA研究院封神榜团队很快就训练出了名为“太乙”的中文版Stable Diffusion。与原版的Stable Diffusion不同,太乙Stable Diffusion可以更好地理解中文的语言文化环境。
声音 | 湖南娄底市市长:推动区块链和实体经济深度融合:1月8日上午,湖南娄底市市委副书记、市长杨懿文在区块链技术应用有关工作专题会议上强调,要向创新要动力,向创新要发展,推动区块链和实体经济深度融合,助力娄底高质量发展。杨懿文在会上指出,要构建区块链产业良好的生态,全面提速、高位推动,全市各级各部门要用更加宽容、开放、协同的态度去理解、推动区块链技术应用,破除信息壁垒,打通信息孤岛。(娄底新闻网)[2020/1/8]
在之前的一篇文章里,我们分析过美国的AIGC产业,提到了希望很多AIGC垂直领域已经杀成了一片红海。比如,文案编辑和市场营销领域的文字生成类产品已经有数十家创业公司在做了。图像生成类的产品在Stable Diffusion和DALLE-2出现之后也迅速开始卷了起来。
然而,中国的AIGC产业大多还是一片蓝海。两张市场地图对比不难看出中国的AIGC公司要比西方少得多,有些领域甚至还没有出现很多初创公司。
中国的AIGC市场地图
西方的AIGC产业是不是比国内要拥挤很多?
动态 | 重庆市医疗保障局提出了医疗保障与区块链技术深度融合的研究课题:近日,重庆市智慧医疗保障研究中心在重庆大学正式揭牌。重庆市医疗保障局提出了医疗保障与大数据、人工智能、区块链等信息技术深度融合的重要研究课题。
重庆市医保局和重庆大学双方将围绕医保公共服务、精准管理等领域,结合大数据、人工智能、区块链等前沿技术,开展前瞻性、战略性、全局性研究;成立重庆市智慧医疗保障研究中心,在科研合作、咨询服务、人才培养等方面,推动战略合作向纵深发展。[2019/11/18]
这一方面是由于中国的底层技术要比美国落后几年,还不足以支持商业化落地。就在几年前,李开复老师在《AI Superpowers》一书里指出,中国虽然在AI技术层面不及美国,但是在应用端却走在了美国的前面。或许这一说法适用于预测型AI(“predictive AI”,比如人脸识别、推荐算法)的时代,但是在生成型AI(“generative AI”)的时代,应用和底层技术结合得更紧密,中国在应用方面也可能要追赶美国的步伐。
中国在应用层的滞后也是由国内B2B产业的特性决定的。西方的文字和图像生成类产品主要都是面向2B的市场的,而中国的B2B市场要比西方小很多,中国企业往往不愿意在软件上花钱,而更愿意去购买服务。这就极大地降低了初创公司想要进入2B类文字、图像生成SaaS赛道的意愿。我们未来在国内可能看到企业打着卖服务的旗号卖软件--用户的体验和买服务无异,而后端的服务却是由AI软件提供的。
另外,与美国横向SaaS模式不同,中国的AIGC的SaaS很有可能会采取纵向的发展模式。这种模式的特点在于,聚焦于特定的应用领域,比如电商、短视频、金融,而不是追求产品的通用化。这种发展模式弥补了中国在模型通用能力上的不足,也利用了在垂直领域积累的大量的专业数据。
动态 | 国家邮政局局长:重点推动大数据、区块链等技术和邮政业深度融合:国家邮政局局长马军胜今日在2019年世界邮政日表示,针对我国邮政业的发展不足,在“智慧邮政”方面,要聚焦提质效育动能,进一步增强邮政业的发展后劲。加快推进“两进一出”工程,推动“快递进厂”、“快递进村”、“快递出海”;大力实施“科技兴邮”战略,加快落实“邮政业大数据发展”行动计划,重点推动云计算、大数据、物联网、区块链、人工智能和邮政业深度融合,提高全要素生产率和运行效率,加快“智慧邮政”建设等。(新京报)[2019/10/9]
中国市场的独特性也决定了中国会发展出和西方不一样的AIGC生态系统和不一样的垂直应用。
这意味着中国的AIGC应用虽然比美国慢了一步,但是简单粗暴的“复制到中国”(“copy-to-China”)模式并行不通。还是拿文字生成领域来讲,中国高质量的数据集少、市场营销以视频形式为主、企业不愿意在软件上花钱,这就意味着类似于美国的Jasper.ai和copy.ai这样的文字生成的通用SaaS,在中国就很难获得很大的2B市场。
中国文字生成产品主要在做2C的业务,并且业务的性质也和美国很不一样。学术类写作、英文写作还有翻译成了中国文字类AIGC产品的重点。众多产品都提供这种服务,比如火龙果写作、秘塔科技还有写作狐。
在2B领域,中国的初创公司选择了专攻垂直领域,而不是追究产品的通用性。一个典型的例子就是澜舟科技。在研发出了孟子大模型之后,澜舟科技并没有继续追求模型的通用性,而是专攻金融领域的NLP分析服务。
中国的AIGC的另一个独特之处就是在AI视频领域有着比较强的竞争力。特别是虚拟人和短视频方面,中国的公司更加懂得结合实用性和娱乐性,而西方的公司的产品往往只有实用性。
我们就拿中国的小冰和英国的Synthethia虚拟人公司来做个对比。Synthethia做出来的虚拟人跟普通公司白领无异,而小冰生成的万科虚拟员工崔筱盼却长着一副明星脸。
中国的虚拟人产业近几年逐渐人们的视野。不论是清华大学首位虚拟学生“华智冰”,还是冬奥会上谷爱凌的虚拟分身,每次虚拟人的亮相都能够引起舆论关注。比起专注于2B赛道的西方公司,中国的AIGC公司因为要做2C的业务,所以特别懂得吸睛引流。
咪咕的谷爱凌虚拟人分身在2022年冬奥会上首秀
虽然目这个产业的商业模式还不成熟,但是技术上一旦有了突破,中国公司的市场营销能力将成为其强大的国际竞争力。
但与此同时,中国在AIGC开发工具领域的初创公司甚少,比如在AI代码生成,还有零代码、少代码的工具领域基本上没有什么创业公司。这可能是因为开发工具领域语言、文化隔阂小、政策约束少,像GitHub这样的西方公司可以比较容易进入中国市场。而中国企业在B2B、B2D产品制作能力上的不足也让中国的开发工具产品很难和西方大厂竞争。
说了这么多,我们在最后想对中国的AIGC产业做出三大预测,供大家参考。
一是,中国会重点发展AIGC的底层技术,形成自主的模型和基础设施。近些年美国政府对华的一系列科技制裁,让国内的各大公司担忧自己哪一天会不会也成为美国的打击对象。想要维持AIGC领域的发展,中国的企业和学术研究院必须要投入更多的研发费用,投入到真正的核心技术研发上,形成独立的产业链。
二是,由于中国国内市场的局限性,出海是很多2B的AIGC企业的必然之选。在AIGC领域,已经有一些初创公司打造出了国际化的企业形象,进入了东南亚、欧洲、北美等海外市场。AI语音助手创业公司赛舵科技研发出了多语种的AI语音生成系统,涵盖了超过20种东南亚语言和方言。而高领资本和GGV投的AI模特公司ZMO.ai在中国成立,相继在美国和加拿大成立了办公室,打入北美市场。
ZMO.ai生成的AI模特
三是,政策监管和法律伦理问题将成为AIGC发展的一个重要挑战。去年12月,国家互联网办公室发布《互联网信息服务深度合成管理规定》,进一步规范AIGC产出的文字、图像和视频内容,规范了个人信息在深度合成中的应用。此前,不少AIGC公司都陷入了侵犯产权、个人信息和产出虚假内容的尴尬境地,包括OpenAI的代码生成软件Codex也因为抄袭GitHub开发者的代码而被告上法庭。如何能在发展技术的同时,遵守法律法规、伦理原则,成为AIGC企业面对的一大难题。
硅谷之外,中国的AIGC产业已经开始崛起。不论是从技术发展还是投资创业的角度来看,中国的AIGC产业相当活跃。中国的AIGC公司面临着和西方公司同样的挑战,比如寻找成熟的商业模式、发展下一代AIGC技术,还有遵循法规伦理。与此同时,中国的AIGC也要面对额外的压力,比如美国政策的打击还有技术层面的不足。
跟互联网和移动手机时代一样,中国的AIGC生态必定和西方不一样。当美国的AIGC公司重点发展B2B业务的同时,中国公司很有可能会首先进入电商、物流还有大消费市场,并且很有可能在国际市场上和西方企业一争高下。
中国的AIGC还处于萌芽期。未来,AIGC产业必将改变我们的生活,中国企业也一定能够加入这股浪潮。
注:本文作者为硅谷Leonis Capital风险投资基金Jenny Xiao (肖文泉) 和Jay Zhao
36氪
媒体专栏
阅读更多
金色早8点
金色财经
Odaily星球日报
欧科云链
Arcane Labs
深潮TechFlow
MarsBit
澎湃新闻
BTCStudy
链得得
ChatGPT等基于自然语言处理技术的聊天AI,就短期来看亟需要解决的法律合规问题主要有三个:其一,聊天AI提供的答复的知识产权问题.
Web3 游戏跨越鸿沟,本质是要实现外部性的收入,而且这个收入能够支撑起整个游戏的内部经济运转。它不再是通过后来进入用户的投入来支撑更早进入用户的收益.
原文:《慢雾:盘点 ZKP 主流实现方案技术特点》 作者:慢雾安全团队 本文将为大家盘点各种 ZKP 实现的技术特点,希望能给大家的学习研究和工程开发带来帮助.
作者:Soya 2021年3月,俄亥俄州参议院正式通过DAO法案,允许用户通过DAO来处理事务,DAO的法律地位也逐步得到认可.
点击阅读:《NFT 行业 2022 年发生了什么? NFTGo 年报(一)》 2022 年「NFT」、「ETH」、「Metaverse」相对搜索量全球统计.
今日凌晨,Sui 公布了该生态「Sui Builder Hero」奖项的首批获奖名单,该奖项旨在表彰那些基于 Sui 网络构建工具和应用.