区块见闻 区块见闻
Ctrl+D收藏区块见闻
首页 > 波场 > 正文

BSP:区块链与 AI 的融合:天然需求_agriblock

作者:

时间:

从长期看,AI对区块链的需求是自我实现的天然需求。当然,有很长的路要走

一、区块链同样是最重要的趋势之一

今年以来,AI 的火爆远超区块链。不过,加密世界也不必气馁,如何理解区块链未来的机会?先说一下想法:

区块链是人类历史上最重要的趋势之一,从 web2 信息互联网演化到 web3 价值互联网同样也是生产力提升的需要。才短短十多年,还有数十年的演化。其底层影响目前看是仅次于 AI 的第二大技术。

AI 和区块链是有融合需求的,虽然进展不会很快。

今天简单说说第二点:AI 和区块链的融合需求。

二、区块链可以帮到 AI 的地方

计算

大家都知道,AI 对算力的需求是巨大的。如何将闲置算力为 AI 算力所用,需求是有的。不过目前看,由于训练 AI 模型属于密集计算,非常昂贵。在通用 AI 计算方面,目前区块链能够帮忙的地方还不多。

其中被诟病的主要有三点:一是,需要专用 GPU 硬件的支持;二是,数据交换延迟;三是,去中心化计算任务的证明。

基于区块链技术的四川省公务员信用记录查询系统正式上线:7月23日,四川省公务员信用记录查询系统正式上线了。为加强政务诚信建设,推动拟录用、调任公务员社会信用记录查询工作制度化、规范化,提升查询工作效率,省大数据中心借助大数据新兴技术,基于区块链建成“川数信链”存证平台,并开发上线了四川省公务员信用记录查询系统,为全省各级机关组织人事部门履行查询程序提供服务保障。

据了解,“区块链+信用报告”是四川省将区块链技术应用到社会信用体系建设工作的创新探索,并在全国率先将区块链技术应用到公务员信用记录查询当中。“川数信链”存证平台充分利用区块链不可篡改和可追溯特点,实现了全省拟录(调)用公务员信用记录报告自动校验功能。

下一步,省大数据中心将继续探索区块链等新兴技术与业务工作深度融合,加快推动区块链等新兴技术在四川信用、司法存证、政务服务等领域应用落地。(四川经济网)[2020/7/23]

上面也提到,AI 训练属于密集型的大规模计算,LLM 这些训练具有数十亿级别以上的参数,训练这些模型的 FLOPs 更是庞大,只有专用硬件(AI GPU,具有特殊组件,如 Tensor Processing Units 等)来执行这些训练才能达到更好效果;此外,为了达到最佳效果,所有 GPU 最好是同构计算,级别相同的 GPU 更易步调一致进行数据交换和继续计算。在去中心化网络,这对参与者的 GPU 是存在要求的。不过,要求越高,门槛越高,不利于去中心化,也不利于利用闲置算力。

动态 | 法律出版社推出区块链研修班:司法部下属的法律出版社近日面向法律与金融界人士,推出“区块链商业与法律实践高端研修班”。[2018/9/10]

AI GPU 需要不断交换数据。如果存在网络延迟,对于 AI 利用分布式的算力来进行训练也不利。

如何去中心化地验证计算任务的完成需要有相对高效和低成本的解决方案。

以上所提到的都是目前去中心化计算跟 AI 结合的难点,这也是目前 AI 和区块链结合相对不容易的地方。不过,从蓝狐笔记角度,随着更多参与者的探索,这个方面的障碍会一步步得到清除,当然也需要较长时间才能实现。

下面来说说,有可能逐步得到解决的方面。如果在通用 AI 角度,目前加密领域还很难切入。那么,可以从特殊领域的 AI 领域切入。而这个切入点,也跟目前 AI 的计算任务密切相关。有两个地方:一是,推理任务在目前的 AI 计算需求中占据了多数;二是,一些微调和推理任务对资源要求较小,通过去中心化计算来实现也有机会。这两点意味着去中心化算力的可能的潜在机会。

特定领域,比如法律、医学、投资、教育、数据分析等专业领域的 AI 可能在早期更适合这种专注于特定领域的分布式计算网络。上面也提到,为 AI 提供去中心化的算力服务,困难的不是完成计算任务,而是如何去中心化地验证任务的完成情况。目前一些项目正在试图解决这个问题,比如 Gensyn 和 together 等。

声音 | 元道:三招甄别区块链炒作:中关村区块链产业联盟理事长元道表示,对于投资者来说,甄别一家上市公司是否是炒作主要看三个地方:一、是否有区块链开源代码;二、是否有真正应用场景;三、是否有超越公司内部的自治社群。[2018/7/18]

Gensyn 融和了一些学术界的研究成果,如概率学习证明、基于图形的精确定位协议,也借鉴了 Truebit 项目的激励和制衡模型。Gensyn 将整个过程分解为八个阶段,从 AI 任务提交、剖析、训练、证明生成到验证证明、挑战、仲裁以及结算。其中 “概率学习证明” 用以构建基线距离阀值,为验证者提供验证基础;“基于图形的精确定位” 技术用以监督验证者验证执行的情况;Truebit 的博弈模型则使得相关方以理性为导向。具体的过程可参考 Gensyn 的白皮书。这里顺便提及一下,像 Truebit 类似的链下计算项目,也有机会向这个方向演化,或许获得更多的业务机会。当然,这需要团队评估其机会。

相对于去中心化的网络计算的落地难度,AI 模型分享和 AI 数据分享是有机会更快落地的领域。下面的两个方面,可能是 AI 跟区块链结合在早期更容易取得突破的地方:去中心化的模型共享和去中心化的数据共享。

金色财经现场报道丨中国银行前行长李礼辉:中国的区块链底层技术的研发和应用走在全球前列:金色财经记者现场报道,今日,在博鳌亚洲论坛“再谈区块链场”中,中国银行前行长李礼辉:中国主有巨大的市场规模和市场潜力,另外也还有足够的投资能力。所以我们中国的区块链底层技术的研发和应用技术的研发,我个人觉得走在了全球前列。[2018/4/10]

模型

通过代币激励来鼓励模型的共享,从而实现更好的模型。甚至,这些模型还可以部署到链上,由任意参与者共同训练,推动模型发展。此外,随着 AI 模型的复杂化,对于推理的信任也变得关键。这也是链上可信推理可以发挥作用的地方。

在模型微调和推理领域,Giza、ChainML、Bittensor、Modulus Lab 等都在探索中。Giza 推出的是链上模型市场,在链上部署简单模型,链上推理,模型所有者可以在模型被使用后获得相关的费用收入。

Modulus 则提出了 zkML 的概念,它认为由于成本问题,在链上运行推理模型是不现实的,因此它的解决方案是在链下运行推理模型,之后生成 zkSNARKs 证明,证明上链,并通过智能合约发挥其作用。

解放军报:区块链技术或将带领人类进入机器信任时代:《解放军报》今日刊文表示,区块链技术具有不可篡改的特性,从根本上也改变了去中心化的信用创建方式,通过数学原理而不是中心化的信用机构来建立广域公正性信任体系。因此,未来区块链技术或将带领人们从个人信任、制度信任进入到机器信任的时代。在科技兴军大潮汹涌澎湃的今天,区块链这项新技术有待我们深入发掘的地方还有很多。特别是在别人制订“规则”的高科技领域,我们更应放眼长远、继续创新,消化吸收区块链技术的精髓,努力形成具有自主知识产权的核心竞争能力。同时,面对各种诱惑驱使,我们需要时刻小心谨慎,要看到风险、避免损失,切莫让经济利益的浮光,遮挡了对区块链本质和深层价值的认识。[2018/3/30]

数据

通过代币经济来激励用户对模型进行反馈、激励用户收集更高质量的数据。通过提供分布式数据获得高质量的数据,尤其是特定领域,这对于 AI 发展有重要意义。同时,这也可以跟 ZK 技术结合起来,可以不用透露数据背后的隐私。这里的难点是如何证明数据本身的质量。

高质量的数据和去中心化的 AI 模型结合,对于 AI 发展会很有意思。

防伪

目前深度学习模型出现之后,导致 AI 生成的图像、音频、视频等变得越来越难以分辨真假。在 AI 生成时代,内容的真实性、防篡改性变得越来越重要。区块链是解决这一问题的重要技术手段。

加密数据身份和签名保证内容创造的真实性,而不是伪造的。尤其是 AI 工具被滥用之后,这个问题尤为严重。这是对抗伪造内容的重要技术手段。在以假乱真时代,需要通过加密技术来分辨真伪。

此外,也需要借用区块链技术进行确权。例如,同样是一幅画,AI 生成和 NFT 图像仅从表面难以辨别,这个时候需要区块链发挥它的作用。

更具韧性的 AI

AI 通过跟区块链融合,获得在计算、模型、数据、带宽、存储等多方面的支持,获取去中心化的基础设施支撑,更具自我演化能力。此外,区块链领域的加密支付、价值流通方面,也可以为 AI 的演化提供支持。

一个完善的区块链基础设施构建成熟之后,AI 将获得更多自我演化的能力。换言之,一个更去中心化的 AI 也是 AI 自我实现的需求,利用区块链的分布式特点来发展 AI,也是 AI 自身发展的诉求。

对于 AI 自身来说,如果最后只被微软、谷歌等大巨头所垄断,对它自身演化也是不利的。AI 有天然的去中心化发展的需求,这是 AI 实现更具韧性的自身需求。AI+区块链所能爆发出来的力量有可能远超人们想象。

三、AI 可以推动区块链的地方

人工智能和链上数据融合

通过 AI 分析链上的动态数据,获得预测的能力,比如投研等。其中一个最令人兴奋的地方是,通过嵌入 AI,智能合约可以实现动态的自主决策。比如,defi 根据实时数据进行调整等。一个动态的而不是静态的智能合约,会让区块链生发出更多应用场景和用户需求。

人工智能的发展,可以加密应用带来新的可能性。

AI 为 DeFi、web3 游戏、web3 社交、web3 应用(交通、住宿、旅游等)带来新的可能性。比如,例如 AI+web3 游戏,有可能诞生出前所未有的游戏模式;例如 AI+物联网+加密支付,有可能诞生出更智能的网络。

ZKP 的重要性

计算任务要保证隐私和完成度,需要 ZKP 加入,形成可验证的工作证明。ZKP 成熟之后,可实现 AI 上链,也可以提供隐私保护以及可验证的机器学习。

整体来说,区块链可以通过去中心化的模式,为算力、数据和模型的协议提供一种协作架构,最终促进 AI 的发展,在这个过程中,有很多细节需要完善,比如需要证明参与者的贡献(不管是算力、数据还是模型),只有低成本地完成了这些,区块链才有机会帮到 AI,否则就是空中楼阁。

当然,从趋势上看,AI 对区块链有天然的需求,AI 需要区块链为自己发展提供真正的韧性。

与此同时,AI 对于区块链应用的进化也会有帮助,不管是 DeFi、游戏还是其他应用,都有可能诞生更智能化的加密应用。这有可能是未来的大叙事,即便下个周期里还不成熟,下下个周期或许也有这样的机会。

以上所提到的只是部分,并不完整,会随着时间的变化有增有减,也欢迎各位在留言补充。

蓝狐笔记

个人专栏

阅读更多

金色财经

Web3活动

Techub Info

区块律动BlockBeats

金色财经 善欧巴

金色早8点

比推 Bitpush News

TaxDAO

SeeDAO见道

WJB

白话区块链

标签:区块链NBSBSPBLOC区块链存证平台nbs币未来价格BSPT币agriblock

波场热门资讯
区块链:东京 vs 京都 日本加密双城记_区块链存证怎么弄

作者:Beosin Donny、Eaton、Dorit东京和京都,都是日本最具代表性的两座城市。东京是日本的首都,它是日本、经济、教育和文化的中心,也是国际交流和创新的重要枢纽.

BIT:金色图览 | NFT行业周报(08.06 - 08.12)_BitKan

【08.06 - 08.12】周报概要:1、上周NFT总交易额:115,357,985(美元)2、上周NFT总交易笔数:251.

NBS:安克雷奇:机构仍在瓜分加密货币的蛋糕_加密货币

编译:Odaily星球日报 Aya尽管夏季市场低迷,但过去几周出现了一系列与机构相关的活动,从申请现货比特币 ETF 到关于托管的广泛讨论,再到即将出台的美国国会立法.

PIN:Variant合伙人:区分DePIN和DeREN两类去中心化基础设施网络_DEPI

作者:Mason Nystrom,Variant Fund投资合伙人;翻译:金色财经xiaozou去中心化基础设施网络正在迅猛发展,这些加密网络利用代币激励产生流动性以支持物理基础设施的运营.

Polygon:NFT成交量超12亿美元 Polygon会再演Solana上的NFT盛况吗?_polygon币官网

作者:律动 BlockBeatsPolygon 似乎和当时的 Solana 一样,只欠 Okay Bears 这样的「东风」谈及 NFT,大家的目光毫无疑问都首先聚焦在 ETH 上.

WEAVE:Web3 创作者经济再思考:从元宇宙到 UDL_元宇宙app官方版下载nft

目前,Web3 创作者经济的现状表现不佳,无论是 NFT、GameFi、社交还是其余尝试都在静默期,Azuki 的莽撞行为甚至给整个 NFT 赛道和创作者经济都造成了重创.